RIEMANNIAN GEOMETRY
 EXCERCISE 3

1. Let U be a normal neighborhood of $p \in M$ with coordinates $\left(x^{1}, \ldots, x^{n}\right)$. Consider the radial function on $\left(U \backslash\{p\}, x^{1}, \ldots, x^{n}\right)$:

$$
r=\sqrt{\sum_{i}\left(x^{i}\right)^{2}}
$$

Show that grad $r=\frac{\partial}{\partial r}$. (Hint: Use Riemannian polar coordinates.)
2. (Geodesics on $P^{n}(\mathbb{R})$)
(i) Prove that the antipodal mapping $A: S^{n} \rightarrow S^{n}$ given by $A(p)=-p$ is an isometry of S^{n}.
(ii) Introduce a Riemannian metric on the real projective space $P^{n}(\mathbb{R})$ such that the natural projection $\pi: S^{n} \rightarrow P^{n}(\mathbb{R})$ is a local isometry.
(iii) Show that the geodesics of $P^{n}(\mathbb{R})$ are periodic with period π.
3. (Lobatchevski plane II) Let M be the upper half-plane $\left\{(x, y) \in \mathbb{R}^{2}: y>0\right\}$, with the Riemannian metric

$$
\frac{1}{y^{2}}(d x \otimes d x+d y \otimes d y)
$$

(i) Prove that the transformation

$$
z \rightarrow \frac{a z+b}{c z+d}, z=x+i y, a d-b c=1
$$

is an isometry of M.
(ii) Recall in Excercise 2, we show the curves $\gamma:(0,+\infty) \rightarrow M, t \mapsto\left(x_{0}, e^{c t}\right)$, where $x_{0} \in \mathbb{R}, c>0$, are geodesics. Then, using (i), deduce the that the upper unit semicircle are geodesics.
3.(Surfaces of revolution) Consider the surface S of revolution obtained by rotating the curve $\left(x=0, y=e^{z}, z\right) \in \mathbb{R}^{3}$, i.e. the graph of the exponential function, about the axis $0 z$. This surface is the image of the map

$$
\begin{aligned}
& \varphi: U \subset \mathbb{R}^{2} \rightarrow \mathbb{R}^{3} \\
& \quad(z, \theta) \mapsto\left(e^{z} \cos \theta, e^{z} \sin \theta, z\right)
\end{aligned}
$$

where

$$
U:=\left\{(z, \theta) \in \mathbb{R}^{2}:-\infty<x<+\infty, 0 \leq \theta<2 \pi\right\}
$$

The image of the curves $\theta=$ constant and $z=$ constant are called meridians and parallels, respectively, of S.
(i) Show that the induced metric in the coordinates (z, θ) is given by

$$
g=\left(e^{2 z}+1\right) d z \otimes d z+e^{2 z} d \theta \otimes d \theta
$$

(ii) Show that S with the induced metric is complete. (Hint: Using HopfRinow Theorem. Which definition of completeness is more convenient for the purpose here?)

